
PHYSICAL REVIEW E DECEMBER 1998VOLUME 58, NUMBER 6
Universal Gaussian falloff in soliton tails

David A. Kessler*
Minerva Center and Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel

Jeremy Schiff†

Department of Mathematics and Computer Science, Bar-Ilan University, Ramat Gan 52900, Israel
~Received 18 March 1998!

We show that in a large class of equations, solitons formed from generic initial conditions do not have
infinitely long exponential tails, but are truncated by a region of Gaussian decay. This phenomenon makes it
possible to treat solitons as localized, individual objects. For the case of the Korteweg–de Vries equation, we
show how the Gaussian decay emerges in the inverse scattering formalism.@S1063-651X~98!02212-0#

PACS number~s!: 03.40.Kf, 02.30.Jr, 47.35.1i, 47.54.1r
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Recently, progress has been made understanding the
development of the leading exponential edge in propaga
fronts @1#. Inspired by results on fronts in the Fisher equati
@2,3#, it was shown in Ref.@1# that in generic reaction
diffusion equation such as the Ginzburg-Landau~GL! equa-
tion, an initial condition with a compact front gives rise to
front with a leading exponential edge that does not ext
forever, but rather is cut off a finite distance ahead of
front. The need for this is clear on physical grounds:
front, if one is sufficiently far ahead of it, has not had time
make its presence felt, and so the field exhibits the typ
Gaussian falloff of the Green’s function~which lacks an in-
trinsic scale!. It was discovered that there is a well-defin
transition region of widthO(At) wherein the field crosse
over from the steady-state exponential to Gaussian fall
This ‘‘precursor’’ transition region propagates out ahead
the front, with a velocityc* which is greater than twice th
velocity c of the front itself.

Given the basic underlying physics, the existence of s
transition regions must be a very general phenomenon,
not just of reaction-diffusion fronts, but of other propagati
solutions, such as the solitons in the Korteweg–de Vr
~KdV! equation

ut52uxxx16uux . ~1!

The known exact one-soliton solutions take the fo

u(x,t)52 1
2 c sech2@ 1

2 Ac(x2x02ct)#, and exhibit exponen-
tial decay for largex. The inverse scattering transform@4#
tells us that the solution of the KdV equation with gene
initial condition u(x,0)5f(x) @with f(x)→0 sufficiently
rapidly asuxu→`# consists of a train of solitons moving t
the right, along with a dispersive wave traveling to the le
As above, we can argue that whenf(x) has compact sup
port, the solution emerges from the rightmost soliton dec
ing as exp(2Acx), wherec is the relevant speed, but fo
sufficiently largex the presence of the solitons will not yet b
felt, and the behavior of the solution will be determined
the Green’s function of the linearized equationut52uxxx ,
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i.e., u will decay roughly as exp(22x3/2/3A3t) @5#. Thus
there is a transition in the nature of the decay. How a
where does this transition take place?

If there is more than one soliton in the soliton train, s
two, with speedsc1 ,c2 (c2.c1.0), then a further problem
arises. The solution emerges from the faster-moving sol
decaying as exp(2Ac2x), but because the tail of the slowe
moving soliton falls slower, it is possible that it will return t
dominate, i.e., the decay will slow to exp(2Ac1x). @For very
largex, as explained above, the solution must go roughly
exp(22x3/2/3A3t).# We note that exact two-soliton solution

u~x,t !52
~c22c1!~c2cosh2a11c1sinh2a2!

2~Ac2cosha1cosha22Ac1sinha1sinha2!2
,

~2!

where a15 1
2 Ac1(x2c1t) and a25 1

2 Ac2(x2c2t), exhibit
exactly this phenomenon: whenx is largeu;exp(2Ac1x),
i.e., the tail of the slow soliton dominates the decay. This
clearly undesirable in physical situations, as it means solit
cannot be considered as isolated objects.

In this paper we study the tails of generic solitons, i.
those produced by taking a generic compactly supported~or
very rapidly decaying! initial condition for the KdV equa-
tion. The results are quite striking. If the soliton is center
at x5ct, then in a region of widthO(c1/4t1/2) around x
5c* t, wherec* 53c, there is a rapid transition in the be
havior of the tail, and the decay changes from exponentia
Gaussian. This behavior persists untilx2c* t5O(c1/2t2/3),
and then there is a second transition to the final region
which u decays roughly as exp(22x3/2/3A3t). In the Gauss-
ian region the decay is very rapid, and the soliton tail
effectively cut off, making the soliton an isolated object.

This behavior is predicted by analysis of the lineariz
equationut52uxxx alone, and does not involve any of th
special properties of the KdV equation. It is thusuniversal
for soliton solutions of PDEs with this linearization, and th
existence of a Gaussian cutoff region is in fact universal i
much larger class of equations, and is responsible, as
have explained, for the individuality of solitons. The exi
tence of exact two-soliton solutions in which the solitons a
7924 © 1998 The American Physical Society
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not genuinely separate objects is one of the special prope
of the KdV equation, and is not physical.

The rest of this paper proceeds as follows. We first g
the arguments for the behavior of the tail outlined above.
then show how this makes the soliton an isolated object
the last part, we connect our results to the exact inve
scattering solution, and use this to generate a numerica
lution of the KdV equation, confirming the picture presente

Soliton Tails.Since we only want to look at the solito
tail, whereu is small, we work with the linearized equatio
ut52uxxx . We have explained in the introduction why th
standard soliton tailu522c exp@2Ac(x2ct)# is not a
physically acceptable solution to this; we require a solut
that for largex decays faster. We look for an acceptab
solution in the form

u~x,t !522c exp@2Ac~x2ct!# f ~y,t !, ~3!

wherey[x2c* t andc* is a constant to be determined, an
where f satisfies boundary conditionsf→1 asy→2` and
f→0 asy→1`. Substituting in, we findf satisfies

f t52 f yyy13Ac fyy1~c* 23c! f y . ~4!

We choosec* 53c so that the term inf y drops out. The key
point is that at large times the diffusive term, 3Ac fyy , domi-
nates the right-hand side out toy of order c1/2t2/3, whereas
the dispersive term,f yyy , dominates fory@ct. To see this,
let us first drop thef yyy term. The resulting diffusion equa
tion then has the exact scaling solution

f ~y,t !5
1

2
erfcS y

2A3c1/4t1/2D , ~5!

which can be seen to satisfy the boundary conditions. T
solution transforms the original exponential falloff ofu to a
Gaussian falloff in a region of widthO(c1/4t1/2) aroundy
50, or equivalentlyx53ct. This erfc cutoff of the exponen
tial moving out ahead of the front is exactly what occurs
the case of the GL equation@1#; there it is an exact solution
of the relevant linearized equation.

Here, however, we have to address the effect of the
glectedf yyy term. There are two cases, depending on the
of the scaling variablez[y/c1/4t1/2. For z5O(1), the f yyy
term is down by a factorc23/4t21/2 and so is in fact negli-
gible for larget@c23/2. For largez, on the other hand, the
f yyy term induces a correction of orderz3/c3/4t1/2 and so once
z5O(c1/4t1/6), or equivalentlyy5O(c1/2t2/3), it is no longer
negligible, as we noted above. In fact, for very largey
@ct, the f yyy dominates, and the controlling factor inf is the
exp(2y3/2/t1/2) of the Green’s function, as expected. In th
regime, the diffusive term can be seen to be of sublead
order, inducing a correction to the argument of the expon
tial of orderAcy.

The upshot of this is that the cutoff of the exponential
provided by the erfc, inducing Gaussian decay. Only mu
later does the Gaussian decay slow down to that prescr
by the Green’s function. It is clear from the very gene
nature of this argument that this scenario isuniversal, apply-
ing to a wide range of soliton equations, as well as fro
propagation problems such as the GL equation.
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We have shown that the erfc solution is consistent,
because the basic equation~4! is linear we can go further and
prove that it in fact is what arises from solving the initi
value problem for compact initial conditions. To do this, w
solve Eq.~4! by taking a Fourier transform in space, findin

f ~y,t !5
1

2pE2`1 i e

`1 i e

eiky2~3Ack22 ik3!t f̃ ~k!dk, ~6!

where f̃ (k) is the Fourier transform of the initial condition

f̃ ~k!5E
2`

`

f ~y,0!e2 ikydy. ~7!

It will turn out that in the region ofy!ct, the only thing we
need to know aboutf is its behavior at smallk. Since the
long-distance structure off (y,0) is that of a step function
u(2y), the smallk behavior of f̃ is precisely that of the
Fourier transform ofu(2y), i.e., for smalluku

f̃ ~k!'
i

k
, Im~k!.0. ~8!

The range of validity of this approximation isuku!a21,
wherea is a characteristic length scale off (y,0).

We now use saddle point techniques to evaluate the i
gral ~6!. We denote the factor in the exponential in the in
grand by g(k), i.e., g(k)5 iky2(3Ack22 ik3)t. For all
positive t and y.23ct, g(k) has two critical points on
the imaginary axis, atk65 i (6Ac1y/3t2Ac). Fory.0 we
deform the integral in Eq.~6! to the steepest descent integr
coming in along the ray arg(k)55p/6, going through the
critical point on the positive imaginary axis atk5k1 , and
going out along the ray arg(k)5p/6 ~along both these rays
ik3 is negative real!. Writing l5(3xt)1/4(k2k1), the factor
in the exponential isg(k)5g(k1)2l21 il3(t/27x3)1/4; pro-
videdt/x3 is small, which it will be, for example, for positive
y andt@c23/2, we can ignore the term inl3. Turning now to
the factor multiplying the exponential in Eq.~6!, this is
f̃ (k)5 f̃ „k11(3xt)21/4l…. Provideduk1u and (3xt)21/4 are
sufficiently small @y!min(ct,Aca21t) and t@a2c21/2 are
sufficient conditions#, we can use the approximation~8! to
estimate this. Putting all the approximations together,
have that for y.0, y!min(ct,Aca21t) and t
@max(a2c21/2,c23/2):

f ~y,t !'
1

2p
eg~k1!E

2`

` ie2l2

l1~3xt!1/4k1

dl

5
1

2
exp@g~k1!1~3xt!1/2uk1u2#

3erfc@~3xt!1/4uk1u#. ~9!

~See, for example, Ref.@6# 3.466 for the necessary integral!
This expression can be substantially simplified providedy
!6c1/2t2/3, in which case the factor in the exponential in E
~9! is o(1), and werecover Eq.~5!. A similar calculation
recovers Eq.~5! in the casey,0 as well.
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We can also use the Fourier integral~6! to learn more
about the post-Gaussian region. Asy gets larger, so doe
uk1u and we can no longer use the small-k limit of f̃ . The
physical meaning of this is that this region is sensitive to
exact initial conditions. This must be so, since the largy
regions feel only the initial condition, since no other info
mation has had time to propagate there. Nevertheless, we
obtain the controlling factors inf (y,t). Once we are suffi-
ciently far from thek50 pole in f̃ , we can treatf̃ as a
constant when doing the saddle point integral. Using the
act form ofk1 above we obtain

f ~y,t !'
f̃ ~k1!

2p1/2~3tx!1/4
expS 2

2x

3
A x

3t
1Ac~x2ct! D .

~10!

This equation is valid for in the regime t
@max(a2c21/2,c23/2) and z@1, and also in the regimey
@max(a4t21,c1/4t1/2), t arbitrary.

We see that the two approximations,~5! and ~10! have a
region of overlap for larget, namely,c1/4t1/2!y!c1/2t2/3.
This is precisely the Gaussian region. Either by usingy

!ct and the pole approximation forf̃ in Eq. ~10! or by using
the large argument approximation of erfc in Eq.~5! we re-
cover

f ~y,t !;
c1/4~3t !1/2

Apy
expS 2

y2

12Act
D . ~11!

Soliton Individuality.As explained in the introduction, i
solitons had infinitely long exponential tails, then in a situ
tion where there were two solitons, with speedsc1 ,c2 (c2
.c1.0), the tail of the slow soliton would dominate th
largex decay. In this section we show that cutting off the t
of a soliton with speedc at x53ct ~up to an additive con-
stant! prevents this.

Assuming exponential tails, the pointx(t) where the slow
soliton tail returns to dominate is determined by an equa
of the formAc1@x(t)2c1t#5Ac2@x(t)2c2t#1const, and so

dx~ t !

dt
5

c1
3/22c2

3/2

c1
1/22c2

1/2
5c11Ac1c21c2 . ~12!

Thus the putative point of ‘‘return of the slow soliton’’ mus
move with a speedc11Ac1c21c2 . But this exceedsc1*
53c1 , so for sufficiently large time the slow soliton ha
been cut off before it can return to dominate the decay.

The meaning of this, as emphasized in the introduction
that solitons can genuinely be regarded as isolated obje
this is only due to the Gaussian cutoff behavior we ha
discussed.

Connection to inverse scattering.The KdV equation can
be solved via the inverse scattering transform~IST!. This
should reproduce the results obtained by our general a
ments above. For largex, where the fieldu(x,t) is small, the
IST tells us thatu'2]F(x,t)/]x, where
e

an
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F~x,t !5 (
n51

N

cn
2e8kn

3t22knx1
1

2pE2`

`

b~k!e8ik3t12ikxdk.

~13!

The various constants in this equation are scattering data
the Schro¨dinger operator2]x

21f(x) associated with the ini-
tial conditionf(x); specifically2kn

2 gives the discrete spec
trum (n51, . . . ,N), the cn are the normalization constan
andb(k) is the reflection coefficient.

When f(x) is a reflectionless potential,b(k) vanishes
and exact soliton solutions are obtained. However, for
neric initial conditions, including the compact initial cond
tions considered here,b(k) does not vanish. In fact, it has
number of poles on the positive imaginary axis, which a
associated with the solitons that develop. When we move
integration path in Eq.~13! to a new contourC above all
these poles, the residues exactly cancel the discrete su
Eq. ~13! @4#, leaving, after a rescaling ofk by a factor 2,

u~x,t !5
i

2pEC exp@ ln b~k/2!1 ik3t1 ikx#kdk. ~14!

Translatingk by 2ik1 , whereik1 is the location of the up-
permost pole ofb(k) ~which gives rise to the fastest soliton
with velocity c54k1

2), we obtain the solution in exactly th

form given by Eqs.~3! and~6!, wheref̃ (k) is identified with
(k12 ik/2)b(k/21 ik1)/c. As expected, thisf̃ (k) has a pole
at zero, and no other singularities in the upper-halfk plane.
The only trivial difference is that the residue at the pole
zero is noti, but some multiple thereof, which lets us calc
late the phase shift of the soliton, information not access
in the general framework.

We can actually use Eq.~14! to numerically calculateu
for a given initial condition, and thus verify our analyti
arguments. We present results for the case wheref(x) is a
square well of depthV and width 2a centered aroundx
50; for this case we have

b~k!5
2Ve22iak

~q1 ik cotqa!~q2 ik tanqa!
, ~15!

whereq[AV1k2. The number of bound states~solitons! is
the greatest integer not exceeding 112AVa/p, associated
with poles on the imaginary axis ofb(k). The poles all have
uku,AV.

Separating the exponent in Eq.~14! into its real and
imaginary parts,A(k)1 iF(k), the idea is to integrate alon
the contour of constant phaseF50 passing through the
saddle point which lies on the imaginary axis. The integra
is symmetric about the imaginary axis, and is strictly d
creasing as we move away from the saddle. Denoting
steepest-descent contour byk(s)[t(s)1 iv(s), param-
etrized by the arclengths, u is given byu(x,t)54I(`)/p,
where

I~s![E
0

s

ds8S v
dt

ds
1t

dv

dsDexp@A~s8!#. ~16!

We simultaneously find this steepest-descent contour and
integral I (s) along the contour by solving via Runge-Kut
the following third-order system:
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ṫ52Fv /AFt
21Fv

2 2lFFt /~Ft
21Fv

2 !,

v̇51Ft /AFt
21Fv

2 2lFFv /~Ft
21Fv

2 !,

İ5~2Fvv1Ftt!exp~A!/AFt
21Fv

2 . ~17!

Here the overdot denotes a derivative with respect tos, and
l is an arbitrary~positive! Lagrange multiplier paramete
stabilizing the F50 constraint. It is easy to verify
that Ḟ@k(s)#52lF. In practice, İ decays rapidly ins,
and the integration may be halted after sufficient accur
is achieved. This process is easily repeated for vari
x, t, yielding the results in Figs. 1 and 2. In Fig.
we plot f (y,t)52u(x,t)/2c exp@2Ac(x2x02ct)# for
t510,100,400. We also exhibit our universal approximat
for f, Eq. ~5!. The argument is good for the smallert, and

FIG. 1. f (y,t)52u(x,t)exp@Ac(x2x02ct)#/2c vs y5x23ct
for t510 ~circle!, 100 ~diamond!, and 400~square!, starting from
the square-well initial conditionu(x,0)52Vu(a2uxu), with V
5a51. The solid line is the analytic approximation~5!.
9

y
s

n

excellent for the largert ’s. In Fig. 2, we again plotf (y,t),
this time in semilog scale, along with our approximations~5!
and ~10!. We see that the erfc works some way past
exponential cutoff, and that Eq.~10! works from the Gauss-
ian regime outward, in accord with our analytical unde
standing.

In summary, we have found that in the KdV equation, a
many other systems possessing solitons, the leading e
nential edge of the soliton is only built up over time. At an
given time, it is cut off at some point by a multiplicative er
factor, which transforms the exponential decay into a Gau
ian falloff. The cutoff point moves out with time, so that th
length of exponential edge increases linearly with time. T
cutoff phenomenon serves to give the soliton an individ
identity.

D.A.K. acknowledges support from the Israel Scien
Foundation.

FIG. 2. Same data as in Fig. 1, in semilog scale, plotted toge
with the two overlapping approximations~5! ~solid line! and ~10!
~dotted line!.
,
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