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Universal Gaussian falloff in soliton tails
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We show that in a large class of equations, solitons formed from generic initial conditions do not have
infinitely long exponential tails, but are truncated by a region of Gaussian decay. This phenomenon makes it
possible to treat solitons as localized, individual objects. For the case of the Korteweg—de Vries equation, we
show how the Gaussian decay emerges in the inverse scattering fornf@En63-651X98)02212-7

PACS numbes): 03.40.Kf, 02.30.Jr, 47.35.i, 47.54+r

Recently, progress has been made understanding the time., u will decay roughly as exp(2%33t) [5]. Thus
development of the leading exponential edge in propagatinghere is a transition in the nature of the decay. How and
fronts[1]. Inspired by results on fronts in the Fisher equationwhere does this transition take place?

[2,3], it was shown in Ref[1] that in generic reaction- If there is more than one soliton in the soliton train, say
diffusion equation such as the Ginzburg-Land@l) equa-  two, with speeds,,c, (c,>c;>0), then a further problem
tion, an initial condition with a compact front gives rise to a arises. The solution emerges from the faster-moving soliton
front with a leading exponential edge that does not extendlecaying as exp{/c,x), but because the tail of the slower-
forever, but rather is cut off a finite distance ahead of themoving soliton falls slower, it is possible that it will return to
front. The need for this is clear on physical grounds: thejominate, i.e., the decay will slow to exp{/c,x). [For very
front, if one is sufficiently far ahead of it, has not had time t0|argex, as exp|ained above, the solution must go rough|y as

make its presence felt, and so the field exhibits the typicaéxp(_2X3/2/3\/§)_] We note that exact two-soliton solutions
Gaussian falloff of the Green'’s functigwhich lacks an in-

trinsic scalg. It was discovered that there is a well-defined

transition region of widthO(+/t) wherein the field crosses uxt) = — (Ca—cCy)(cycostfa; +cisintPay)
over from the steady-state exponential to Gaussian falloff. ’ 2(\/C—ZCOSha1COSha2— \/c_lsinhalsinhaz)z’

This “precursor” transition region propagates out ahead of )
the front, with a velocityc* which is greater than twice the
velocity ¢ of the front itself.
Given the basic underlying physics, the existence of suchvhere a;=3 Jei(x—cqt) and a,= 21\ (x—c,t), exhibit
transition regions must be a very general phenomenon, truexactly this phenomenon: whenis largeu~ exp(—+/c;x),
not just of reaction-diffusion fronts, but of other propagatingi.e., the tail of the slow soliton dominates the decay. This is
solutions, such as the solitons in the Korteweg—de Vrieglearly undesirable in physical situations, as it means solitons
(KdV) equation cannot be considered as isolated objects.
In this paper we study the tails of generic solitons, i.e.,
U= — UxxxT 6U L. (1) those produced by taking a generic compactly suppdded
. . very rapidly decayinginitial condition for the KdV equa-
The known exact one-soliton solutions take the formion The results are quite striking. If the soliton is centered
u(x,t) = — 3¢ sech[ 3 Vc(x—x,—ct)], and exhibit exponen- at x=ct, then in a region of widthO(c¥4?) around x
tial decay for largex. The inverse scattering transforf] =c*t, wherec* =3c, there is a rapid transition in the be-
tells us that the solution of the KdV equation with generichavior of the tail, and the decay changes from exponential to
initial condition u(x,0)= ¢(x) [with ¢(x)—0 sufficiently  Gaussian. This behavior persists untit c*t=0(c*%?3),
rapidly as|x|—c] consists of a train of solitons moving to and then there is a second transition to the final region, in
the right, along with a dispersive wave traveling to the left.which u decays roughly as exp@x®%3+/3t). In the Gauss-
As above, we can argue that wheifx) has compact sup- ian region the decay is very rapid, and the soliton tail is
port, the solution emerges from the rightmost soliton decayeffectively cut off, making the soliton an isolated object.
ing as exp\/cx), wherec is the relevant speed, but for  This behavior is predicted by analysis of the linearized
sufficiently largex the presence of the solitons will not yet be equationu,= —u,,, alone, and does not involve any of the
felt, and the behavior of the solution will be determined byspecial properties of the KdV equation. It is thusiversal
the Green’s function of the linearized equatiofFE — Uyyy, for soliton solutions of PDEs with this linearization, and the
existence of a Gaussian cutoff region is in fact universal in a
much larger class of equations, and is responsible, as we
*Electronic address: kessler@dave.ph.biu.ac.il have explained, for the individuality of solitons. The exis-
TElectronic address: schiff@math.biu.ac.il tence of exact two-soliton solutions in which the solitons are
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not genuinely separate objects is one of the special properties We have shown that the erfc solution is consistent, but
of the KdV equation, and is not physical. because the basic equati@h is linear we can go further and
The rest of this paper proceeds as follows. We first giveprove that it in fact is what arises from solving the initial
the arguments for the behavior of the tail outlined above. Wevalue problem for compact initial conditions. To do this, we
then show how this makes the soliton an isolated object. Isolve Eq.(4) by taking a Fourier transform in space, finding
the last part, we connect our results to the exact inverse
scattering solution, and use this to generate a numerical so- 1 (etie
lution of the KdV equation, confirming the picture presented. fly,H)= ZJ
Soliton Tails.Since we only want to look at the soliton
tail, whereu is small, we work with the linearized equation
U;= — Uyyy- We have explained in the introduction why the
standard soliton tailu=—2c exd —+/c(x—ct)] is not a "
physically acceptable solution to this; we require a solution "f‘(k)zf f(y,00e vdy. (7
that for largex decays faster. We look for an acceptable o
solution in the form

eiky*(3v5k2*ik3)t’f(k)d K, (6)

—o+ie

Where7(k) is the Fourier transform of the initial condition:

It will turn out that in the region ofy<<ct, the only thing we
u(x,t)=—2cexd — \/E(x—ct)]f(y,t), 3 need to know about is its behavior at smalk. Since the
long-distance structure df(y,0) is that of a step function

wherey=x—c*t andc" is a constant to be determined, and 5 _y) the smallk behavior off is precisely that of the
wheref satisfies boundary conditiorfs»1 asy——« and  kqyrier transform oB(—y), i.e., for small|k|

f—0 asy— +o. Substituting in, we find satisfies

f= = fyyyt 3V H,,+ (C* —30)f, . (@) T~ Im(k)>0. ®

We choosee* = 3c so that the term irfy, drops out. The key o . o
point is that at large times the diffusive termy&,,, domi- ~ The range of validity of this approximation ik/<a™*,
nates the right-hand side out yoof order c*42?, 'whereas Wherea is a characteristic length scale tfy,0).

the dispersive termi,,,, dominates foy>ct. To see this, We now use saddle point techniques to evaluate the inte-
let us first drop thef,,, term. The resulting diffusion equa- 9gral (6). We denote the factor in the exponential in the inte-
tion then has the exact scaling solution grand by g(k), i.e., g(k)=iky—(3yck®*=ik3t. For all

positivet andy>—3ct, g(k) has two critical points on
1 y the imaginary axis, at. =i(* \c+y/3t—/c). Fory>0 we
f(y,t)= serfc 2 J3cte) (5 deform the integral in Eq(6) to the steepest descent integral
¢ coming in along the ray ar§j=5m/6, going through the
gritical point on the positive imaginary axis kt=k. , and

which can be seen to satisfy the boundary conditions. This'":
going out along the ray arg]= /6 (along both these rays

solution transforms the original exponential falloff oo a =~ ) Y. _ T4

Gaussian falloff in a region of widt©(c¥4Y?) aroundy K" is negative real Writing )‘_(3)(2 ,(k; k+),3:chl(/e4factor

=0, or equivalently=3ct. This erfc cutoff of the exponen- N the exgpnenhal ig(k) =g(k) —N2+iN3(t/27%%) Y% pro-

tial moving out ahead of the front is exactly what occurs inVidedt/x 1sg/§mall, which it will be, for (_ex3ample,.for positive

the case of the GL equatidd]; there it is an exact solution Y &ndt>c~"%, we can ignore the term ik”. Turning now to

of the relevant linearized equation. Ehe faftor multiplying the exponential in Ed6), this is
Here, however, we have to address the effect of the nef(k)=T(k, +(3xt) "¥*\). Provided|k,| and (3t)~** are

glectedf,,, term. There are two cases, depending on the sizeufficiently small[y< min(ct,\/ca~'t) and t>a?c” 2 are

of the scaling variable=y/c*"2 Forz=0(1), thef,,,  sufficient condition} we can use the approximatid) to

term is down by a factoc~% %2 and so is in fact negli- estimate this. Putting all the approximations together, we

gible for larget>c~32 For largez on the other hand, the have that for y>0, y<min({ctyca 't) and t

f,yy term induces a correction of ordet/c**t*?and so once  >max(@’c ¢~ ¥?):

z=0(cY4Y®), or equivalentlyy=0(c¥%?3), it is no longer

negligible, as we noted above. In fact, for very large 1 i [ e\
. . . ~— + _—
>ct, thef,,, dominates, and the cqntrolhng factorfiis the | fly.t)~5—e f_w Nt (3x0) P dx
exp(—y*4t*?) of the Green’s function, as expected. In this *
regime, the diffusive term can be seen to be of subleading a1
order, inducing a correction to the argument of the exponen- = sexg(k,) +(3xt) k]
tial of order \/cy.
The upshot of this is that the cutoff of the exponential is x erfd (3xt) Y4k, |]. 9)

provided by the erfc, inducing Gaussian decay. Only much

later does the Gaussian decay slow down to that prescribe@ee, for example, Reff6] 3.466 for the necessary integjal.
by the Green’s function. It is clear from the very generalThis expression can be substantially simplified proviged
nature of this argument that this scenariaisversa) apply-  <6cY2?3, in which case the factor in the exponential in Eq.
ing to a wide range of soliton equations, as well as front(9) is o(1), and werecover Eq.(5). A similar calculation
propagation problems such as the GL equation. recovers Eq(5) in the casey<0 as well.
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We can also use the Fourier integf8) to learn more N s 1 [ L
about the post-Gaussian region. Asgets larger, so does  F(x,t)= > cﬁes"n“z"n“rz—f b(k)e8ikt+2ikxg
|k,| and we can no longer use the smiallimit of T. The =t e (13
physical meaning of this is that this region is sensitive to the
exact initial conditions. This must be so, since the layge The various constants in this equation are scattering data for
regions feel only the initial condition, since no other infor- the Schrdinger operator (;§+ &(x) associated with the ini-
mation has had time to propagate there. Nevertheless, we Cgg| condition#(x); specifically— Kﬁ gives the discrete spec-
obtain the controlling factors ifi(y,t). Once we are suffi- trum (n=1,... N), thec, are the normalization constants
ciently far from thek=0 pole inf, we can treaff as a andb(k) is the reflection coefficient.
constant when doing the saddle point integral. Using the ex- When ¢(x) is a reflectionless potentiah(k) vanishes

act form ofk, above we obtain and exact soliton solutions are obtained. However, for ge-
neric initial conditions, including the compact initial condi-
T(k,) o [x tions considered herdy(k) dog; no_t van_ish. In cht, it has a
fly,t)~ —+exp< _ _\/:+ \/E(x—ct)>. number of poles on the positive imaginary axis, which are
27 3tx) Y4 3 V3t associated with the solitons that develop. When we move the

(100 integration path in Eq(13) to a new contouiC above all
these poles, the residues exactly cancel the discrete sum in
This equation is valid for in the regimet Eq. (13) [4], leaving, after a rescaling &f by a factor 2,
>max@’c Y2c %) and z>1, and also in the regimg i
>max@‘t %,c4?), t arbitrary. u(x,t)= 2—f exf Inb(k/2)+ik3t+ikx]kdk (14)
We see that the two approximatior(§) and (10) have a mic
region of overlap for largd, namely, c*t*2<y<ct42" Translatingk by 2i k;, whereik; is the location of the up-

This is precisely the Gguss}an ~region. Either by u-sjng permost pole ob(k) (which gives rise to the fastest soliton,
<ct and the pole approximation fdrin Eq.(10) or by using  with velocity c=4«2), we obtain the solution in exactly the

the large argument approximation of erfc in &f) we re- form given by Eqgs(3) and(6), wheref (k) is identified with

cover (k1—ik/2)b(k/2+ikq)/c. As expected, thi§(k) has a pole
at zero, and no other singularities in the upper-taghlane.
c3t)t? y? The only trivial difference is that the residue at the pole at
fly,t)~ Ja exp — : (11 ero is noti, but some multiple thereof, which lets us calcu-
y 12\/ct . > et . :
late the phase shift of the soliton, information not accessible
in the general framework.
solitons had infinitely long exponential tails, then in a situa-fgr g given initial condition, and thus verify our analytic
tion where there were two solitons, with speedsc, (C;  arguments. We present results for the case wiggse is a

>C1>0), the tail of the slow soliton would dominate the Square well of deptW and width 22 centered arounck
largex decay. In this section we show that cutting off the tail =g: for this case we have

of a soliton with speea at x=3ct (up to an additive con- .
stan} prevents this. — Ve 2Ziak
Assuming exponential tails, the poixft) where the slow b(k)= (g+ik cotqa)(g—ik tanga)’
soliton tail returns to dominate is determined by an equation
of the form/c,[x(t) — c,t]= e [ X(t) —c,t]+const, and so  whereq=V+ k?. The number of bound statésolitons is
the greatest integer not exceeding 2\Va/ =, associated
32 _ap with poles on the imaginary axis tfk). The poles all have
dx(t)_cl —C =c,;++/cC+C (12 |k|<\/v'
dt — l2_clz Tt YR Separating the exponent in E@l4) into its real and
imaginary parts A(k) +i®(k), the idea is to integrate along
. . . o the contour of constant phask=0 passing through the
Thus thg putative point of “return of the SIQW soliton TUSI saddle point which lies on the imaginary axis. The integrand
move with a speed;+ \cic;+C,. But this exceeds; s symmetric about the imaginary axis, and is strictly de-
=3cy, so for sufficiently large time the slow soliton has ¢reasing as we move away from the saddle. Denoting our
been cut off before it can return to dominate the decay. steepest-descent contour Hy(s)=7(s)+iw(s), param-

The meaning of this, as emphasized in the introduction, i$izeq by the arclength, u is given byu(x,t) =4Z(x)/,
that solitons can genuinely be regarded as isolated objectghere

this is only due to the Gaussian cutoff behavior we have
discussed. s [ dr  de ,

Connection to inverse scatterinfhe KdV equation can I(S)Efods (“’d_SJ“ TE) exfLA(s")]- (16)
be solved via the inverse scattering transfofl®T). This
should reproduce the results obtained by our general argie simultaneously find this steepest-descent contour and the
ments above. For large where the fieldu(x,t) is small, the integrall(s) along the contour by solving via Runge-Kutta
IST tells us thau~2dF(x,t)/dx, where the following third-order system:

(15
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FIG. 1. f(y,t)=—u(x,t)exg Vc(x—xo—ct)]/2c vs y=x—3ct
for t=10 (circle), 100 (diamond, and 400(squarg, starting from
the square-well initial conditioru(x,0)=—-Vé(a—|x|), with V
=a=1. The solid line is the analytic approximati¢s).

T=—0, O+ DI \DD /(D34 D2),

0=+ | JD2+ D2 \DD, /(D2+D2),

I=(—® 0+, 1)exp A)/ D2+ 2. (17

Here the overdot denotes a derivative with respec tand
\ is an arbitrary(positive Lagrange multiplier parameter
stabilizing the =0 constraint. It is easy to verify

that ®[k(s)]=—Ad. In practice,Z decays rapidly ins,
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FIG. 2. Same data as in Fig. 1, in semilog scale, plotted together
with the two overlapping approximatior(s) (solid line) and (10)
(dotted ling.

excellent for the larget’s. In Fig. 2, we again plof(y,t),

this time in semilog scale, along with our approximati¢bs
and (10). We see that the erfc works some way past the
exponential cutoff, and that E¢10) works from the Gauss-
ian regime outward, in accord with our analytical under-
standing.

In summary, we have found that in the KdV equation, and
many other systems possessing solitons, the leading expo-
nential edge of the soliton is only built up over time. At any
given time, it is cut off at some point by a multiplicative erfc
factor, which transforms the exponential decay into a Gauss-
ian falloff. The cutoff point moves out with time, so that the

and the integration may be halted after sufficient accuracygngih of exponential edge increases linearly with time. This
is achieved. This process is easily repeated for varioug sff phenomenon serves to give the soliton an individual

X, t, yielding the results in Figs. 1 and 2. In Fig. 1
we plot f(y,t)=—u(x,t)/2c exd —c(x—x,—ct)] for

t=10,100,400. We also exhibit our universal approximation

for f, Eq. (5). The argument is good for the smallgrand

' identity.
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